

Dark inorganic carbon fixation contributes to bacterial organic carbon demand 1 in the oligotrophic Southeastern Mediterranean Sea 2 Tom Reich 1,2*, Natalia Belkin 1, Guy Sisma-Ventura 1, Hagar Hauzer 1, Maxim 3 Rubin-Blum ^{1,2}, Ilana Berman-Frank ^{2*}, and Eyal Rahav ^{1,3,4*} 4 5 ¹ National Institute of Oceanography, Israel Oceanographic and Limnological 6 7 Research, Haifa, Israel. 8 ² Department of Marine Biology, Leon H. Charney School of Marine Sciences, 9 University of Haifa, Haifa, Israel. ³ Department of Earth and Environmental Science, Ben-Gurion University of the 10 11 Negev, Beer Sheva, Israel. 12 ⁴ Institute of Marine Science, University of California, Santa Cruz, CA, USA. 13 *Correspondence: TR- treich02@campus.haifa.ac.il; IBF- iberman2@univ.haifa.ac.il; 14 ER- eyal.rahav@ocean.org.il 15 16 **Abstract** 17 18 Settling organic matter derived from photosynthesis at the illuminated layers is often 19 not sufficient to meet the energy demands of microbes in the dark ocean. This 'mismatch' is especially notable in the warm and oligotrophic Mediterranean Sea where 20 21 the annual photosynthesis is one of the lowest in the world's oceans yet its aphotic zone 22 is considered a hotspot for microbial activity and biomass. Here, we investigated the role of photic and aphotic dark inorganic carbon fixation rates (DCF) in supporting 23

bacterial carbon demand at the offshore south-eastern Mediterranean Sea during the mixed and stratified periods. Our results demonstrate that DCF rates are measurable throughout the water column (0-1750 m) and are on the same order of magnitude as photosynthesis (34 vs. 45 g C m⁻² y⁻¹, respectively). Using a carbon mass balance that considers photosynthesis, DCF and bacterial production (and hence respiration) we show that chemoautotrophy provides ~35% of the 'missing carbon' supply needed for microbial growth and activity in the aphotic layer, while other sources of dissolved organic carbon remain to be elucidated. These findings underscore the need for further research into the factors affecting DCF, its role in global carbon budgets, and its potential to enhance atmospheric inorganic carbon sequestration.

1 Introduction

The oceans aphotic layers contain the world's largest reservoir of dissolved inorganic carbon (DIC) pool (Burd et al., 2010; Reinthaler et al., 2010), and harbor ~65% of all prokaryotes (Whitman et al., 1998). Aphotic prokaryotes typically rely on utilization of organic matter (and carbon) exported from the euphotic zone through photosynthesis to sustain their growth and accumulate biomass (del Giorgio and Duarte, 2002). Current estimates reveal, however, a discrepancy between the supply of particulate organic carbon from photosynthesis and the bacterial organic carbon demand (BCD) in the aphotic zones (Ducklow, 2000; Karl et al., 1988; Smith and Azam, 1992). This mismatch suggests that there are other source/s of carbon that are being utilized by aphotic microorganisms (Baltar et al., 2009; Herndl and Reinthaler, 2013). One such source, that has been far less investigated, involves the fixation of DIC by chemoautotrophic microbes and its assimilation into new biomass. This could subsequently provide bioavailable DOC to other microbial populations at depth.

DIC uptake by heterotrophic bacterioplankton is generally attributed to 49 anaplerotic reactions (Dijkhuizen and Harder, 1984; Erb, 2011), but other 50 51 microorganisms such as nitrifying bacteria can also fix DIC (Alonso-Sáez et al., 2010). 52 Genomic studies on deep-sea microbial communities identified several genes and metabolic pathways that enable some microbes to thrive as chemoautotrophs on 53 54 inorganic substrates (Berg et al., 2007; Hallam et al., 2006). Measurements of CO₂ 55 fixation by chemoautotrophs and heterotrophic bacterioplankton are scarce, yet substantial dark DIC fixation (DCF) rates have been reported in various oceanic settings 56 57 and water masses (Swan et al. 2011; Zhou et al. 2017; La Cono et al. 2018; Alothman 58 et al. 2023) and maybe more common than previously thought (Hansman et al., 2009; 59 Herndl et al., 2005). 60 The deep waters of the southeast Mediterranean Sea are characterized by higher concentrations of inorganic nutrients compared to the photic zone (e.g., ~6 µmol 61 NO_3+NO_2 kg⁻¹ and ~ 0.2 PO₄ µmol kg⁻¹ (Ben-Ezra et al., 2021; Sisma-Ventura et al., 62 63 2021) and low bioavailable dissolved organic carbon (Martínez-Pérez et al., 2017; Santinelli, 2015; Santinelli et al., 2010). Despite these characteristics, the southeast 64 Mediterranean Sea's aphotic waters are considered a hotspot for bacterial activity 65 compared to other oceanic regimes at similar depths (Luna et al., 2012; Rahav et al., 66 2019). Nutrient addition bioassays and water mixing simulations suggest that aphotic 67 prokaryotes are primarily carbon-limited (Hazan et al., 2018; Rahav et al., 2019). 68 69 Here, we report on both photic and aphotic DCF and heterotrophic bacterial production 70 rates from 6 cruises held between 2021-2023 at the offshore southeastern Mediterranean (bottom depth 1500-1750 m) during the mixed (winter) and stratified 71 72 (summer) periods. Our results demonstrate that DCF rates cannot be negleted (contrary to past conventions, Nielsen 1952) and within the same order of magnitude as 73

74 photosynthesis or heterotrophic bacterial production (BP). We also show that DCF

substantially contributes to bacterial carbon demand (BCD), therefore providing, some

of the 'missing carbon' supply needed for microbial growth and activity in the aphotic

77 layer of the southeast Mediterranean Sea.

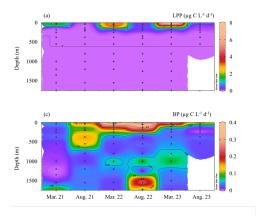
78

79

2 Material and methods

80 2.2 Sample collection - Seawater was collected during six seasonal cruises in the Levantine Basin, southeast Mediterranean Sea, on-board the R/V Bat-Galim between 81 82 2021-2023. Two 'deep' stations were sampled in each cruise; one located at the edge of the continental shelf (H05 33.00 Lat, 34.50 Lon, bottom depth ~1500 m, 50 Km from 83 the coast) and the other at the edge of Israel's exclusive economic zone (H06 33.15 Lat, 84 34.16 Lon, bottom depth 1750 m, 90 Km from shoreline). Seawater was sampled at 85 discrete depths throughout the water column, from the surface (~0.5 m) to the bottom 86 87 (1500-1750 m) using Niskin bottles. Sampling depths were chosen in real-time based 88 on reads of Conductivity Temperature Depth (CTD) (Seabird 19 Plus), chlorophyll fluorescence (Turner designs, Cyclops-7) and PAR (Sea Bird). Measurements included 89 DIC (NaH¹⁴CO₃) uptake under ambient light (hereafter 'light primary productivity, 90 91 LPP) or under full dark conditions (DCF), bacterial productivity (BP) and nutrient 92 quantification. Nitrite and ammonium concentrations - Samples for nitrite (NO₂-) and ammonium 93 (NH₄⁺) concentrations were collected only in March and August 2023 cruises. The 94 samples were pre-filtered (0.45 µm), placed in acid-washed plastic vials, and were kept 95 frozen at -20 °C until analysis. Nutrients were measured with a Seal Analytical AA-3 96 system. The limits of detection for NO₂- and NH₄+ were 0.06 µM and 0.09 µM, 97 98 respectively.

2.3 LPP and DCF - Seawater was collected in triplicates into 45-250 ml bottles and 99 spiked with NaH¹⁴CO₃ (Perkin Elmer, specific activity 56 mCi mmol⁻¹). The bottles 100 101 were incubated for 24 h under ambient light for 'total primary production or under full 102 dark for DCF estimates (Nielsen, 1952). At the conclusion of the incubation, the spiked seawater was filtered onto GF/F filters using low vacuum pressure (<50 mmHg). Next, 103 104 the excess ¹⁴C-bicarbonate was removed by fuming with 50 µl of 37% hydrochloric 105 acid overnight. Finally, 5 ml scintillation cocktail (ULTIMA-GOLD) was added, and 106 the disintegrations per minute (DPM) from the particulate matter concentrated on the 107 filters were counted using a TRI-CARB 4810 TR (Packard) liquid scintillation counter. Blank seawater spiked with NaH14CO₃ was filtered immediately without incubation and 108 109 the reads were subtracted from the sample's DPM. The blank DPM reads were usually negligible (<5% of the sample's DPM). Aliquots (50 µl) from random spiked samples 110 were placed onto new GFF filters, added with 50 µl ethanolamine and scintillation 111 liquid, and counted immediately without incubation to account for the 'added activity' 112 of the radiolabeled working solution used. LPP was calculated as the difference 113 between the DPM retrieved from the samples incubated under ambient light ('total 114 primary production) and the 'dark' bottles. Dark or light dissolved inorganic carbon 115 fixation was calculated based on the Bermuda Atlantic Time-series Study (BATS) 116 protocol (https://bios.asu.edu/bats/bats-data). More details can be found in Reich et al. 117 (2024).118 119 2.3 Bacterial production- Samples (1.7 ml) were incubated in the dark with 100 nmol 120 ³H-leucine L⁻¹ (Perkin Elmer, specific activity 123 Ci mmol⁻¹) for 4-6 h under ambient temperature (Simon et al., 1990). The incubations were terminated with 100 µl of 121 trichloroacetic acid (100%), were processed as described by Smith and Azam (1992), 122 123 and counted using a TRI-CARB 4810 TR (Packard) liquid scintillation counter. Killed


control samples containing ³H-leucine L⁻¹ and trichloroacetic acid (without incubation) 124 were also measured and this control sample's DPMs were subtracted from the sample's 125 reads. A conversion factor of 3 kg C mol⁻¹ per mole leucine incorporated was used, 126 127 assuming an isotopic dilution of 2.0 (Simon and Azam 1989). 128 2.4 Molecular analyses and statistics - DNA was extracted from water samples with 129 the PowerWater kit (Qiagen, USA), using the FastPrep-24TM Classic (MP Biomedicals, USA) bead-beating to disrupt the cells (2 cycles at 5.5 m sec-1, with a 5 min interval). 130 The V4 region (~ 300 bp) of the 16S rRNA gene was amplified from the DNA (~50 131 ng) using the 515Fc/806Rc primers amended with relevant tags(Apprill et al., 2015; 132 Parada et al., 2016). PCR conditions were as follows: initial denaturation at 94 °C for 133 45 s, 30 cycles of denaturation (94 °C for 15 sec), annealing (15 cycles at 50 °C and 15 134 cycles at 60 °C for 20 sec) and extension (72 °C for 30 s). Two annealing temperatures 135 were used to account for the melting temperature of both forward (58.5-65.5 °C), and 136 reverse (46.9-54.5 °C), primers. 137 Demultiplexed paired-end reads were processed in QIIME2 V2022.2 environment 138 (Bolyen et al., 2019). Reads were truncated based on quality plots, checked for 139 chimeras, merged and grouped into amplicon sequence variants (ASVs) with DADA2 140 (Callahan et al., 2016), as implemented in QIIME2. The amplicons were classified with 141 Scikit-Learn classifier that was trained on Silva database v138 (16S rRNA, (Glöckner 142 143 et al., 2017). Mitochondrial and chloroplast sequences were removed from the 16S rRNA amplicon dataset. Downstream analyses were performed in R v4.1.1 (R Core 144 Team, 2021), using packages Phyloseq (McMurdie and Holmes, 2013) and Ampvis2 145 146 (Andersen et al., 2018). Indicator species analyses were performed using Indic species package v1.7.9 (De Ca'ceres et al., 2009). Amplicon reads were deposited to the NCBI 147 SRA archive under project number PRJNA1215023. 148

3 Results and discussion

LPP was restricted to the photic layer with highest rates usually measured at the surface (\sim 0.5 m) that gradually decreased to reach minimum rates at the bottom of the photic layer (\sim 180 m) (Fig 1A). Relatively low LPP values were measured during the stratified summer (\sim 0.1-0.8 µg C L⁻¹ d⁻¹), whereas higher rates were measured during the winter mixing period (\sim 0.2-7.4 µg C L⁻¹ d⁻¹) (Fig 1A). This resulted in \sim 10-fold higher integrated rates measured during the mixed compared to those measured during the stratified period (Table 1), in accordance with studies from the area (Psarra et al., 2005; Reich et al., 2022; Sisma-Ventura et al., 2022b). In contrast with LPP, DCF was not restricted to the photic layer and ranged from 0 to \sim 0.4 µg C L⁻¹ d⁻¹ throughout the water column (Fig 1B, Fig 2A), without significant differences in the absolute rates between the photic and aphotic zones (t-test, p>0.05, Fig 2B). The integrated photic DCF was typically lower, yet rates were of the same order of magnitude, then others previously reported in the central and western Mediterranean Sea (La Cono et al., 2018). The aphotic DCF rates were \sim 3.5 fold higher during the mixed than during the stratified period (Table 1, Fig 2A).

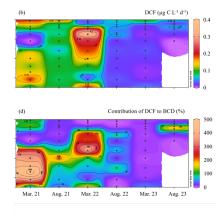


Figure 1: Spatial and temporal variability in rates of LPP (a), DCF (b), BP (c) and the contribution of DCF to bacterial carbon demand (BCD) (d) at the offshore SE Mediterranean Sea (Lat. 33.15 N, Lon. 34.16 E) between 2021-2023. BCD was calculated assuming a bacterial gross efficiency of 0.20 (Gasol et al., 1998).

171

172

173

174

Table 1: Rates and contribution of DCF to metabolic processes in the photic (0-180) and aphotic (>180 m) depths of the pelagic southeast Mediterranean Sea BDL – Below detection limit.

Variable	Season	Photic	Aphotic
Variable		(0-180 m)	(180-1750 m)
LPP (mg C m ⁻² d ⁻¹)	Mixed	158-649	BDL
	Stratified	4-69	BDL
DCF (mg C m ⁻² d ⁻¹)	Mixed	6-27	17-342
	Stratified	7-19	8-127
BP (mg C m ⁻² d ⁻¹)	Mixed	6-58	12-65
	Stratified	9-55	7-123
DCF contribution to BCD (%) *	Mixed	23-221	49-594
	Stratified	8-31	8-42
DCF contribution to total PP (%)	Mixed	1-15	
	Stratified	12-81	

* Assuming bacterial gross efficiency of 0.2 (Gasol et al., 1998) and that the available DOC for bacteria is 20% of the total primary productivity at the photic layer (Teira et al., 2003).

178

177

175

179

181

185

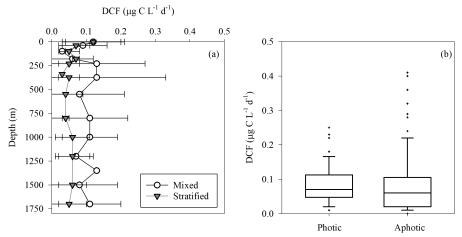
187

189

194

195

197



The higher aphotic DCF may be related to more bioavailable carbon that is transported from the photic layer as marine snow and supplies organic carbon to heterotrophic 180 activity (mostly during winter when LPP is higher). However, given the oligotrophic 182 nature of the southeast Mediterranean Sea, including during the winter (Berman-Frank and Rahav, 2012; Reich et al., 2022), most of the organic carbon (both particulate and 183 184 dissolved originating from LPP is recycled within the photic layer and only a small fraction fluxes down to the aphotic zone) as has been recorded in sediment traps 186 (Alkalay et al., 2024). Another possible mechanism that may, potentially, explain higher DCF rates during the winter versus the summer is anaplerosis. The extent of anaplerotic reactions is primarily 188 driven by the availability of labile organic carbon to heterotrophs (Dijkhuizen and Harder 1984). Therefore, assuming anaplerosis drives DCF, we expect it will be 190 191 positively coupled to BP. Yet, our results do not support the likelihood of significant anaplerosis reactions, mainly because, the spatiotemporal distribution of aphotic BP 192 193 (Fig 1C) differs considerably from that of the DCF (Fig 1B) and does not correlate with it (Fig 3A). In fact, BP seems to be coupled with LPP at the photic layer reaching ~0.4 μg C L⁻¹ d⁻¹ (not shown). Except for some sporadic measurements, aphotic BP rates were usually homogeneous and typically <0.1 μg C L⁻¹ d⁻¹ (Fig 1C). Further, the highest 196 integrated aphotic BP was measured during the summers of 2021 and 2022 and not during the winter cruises when generally higher DCF was recorded (Table 1, Fig 2A). 198

E

Figure 2: Dark carbon fixation rates in the southeastern Mediterranean Sea. Averaged vertical distribution of DCF in the offshore southeast Mediterranean Sea during the mixed (white) and stratified (gray) periods (a), and a box plot showing the DCF rates at the photic (0-180 m) and aphotic (>180 m) water depths (b).

Despite the lack of a clear positive relationship between DCF and BP, DCF may contribute to bacterial carbon demand (BCD) at the aphotic zone. Thus, we use a literary standard, a bacterial growth efficiency of 0.20 (Doval et al., 2001) to calculate BR and BCD. This resulted in bacterial respiration (BR) ranging from 29-494 mg C m⁻² d⁻¹ (average 209±172 mg C m⁻² d⁻¹), and the concurrent BCD ranges from 36 to 648 mg C m⁻² d⁻¹ (average 262±121 mg C m⁻² d⁻¹). Under these circumstances, exudation of DOC from primary productivity at the photic layer estimated as 20% of the rates (Teira et al., 2003) and equals ~1-130 mg C m⁻² d⁻¹. This new DOC, the originated form the photic zone cannot support the aphotic BCD in our system in all of our observations. However, if we consider the contribution of DOC produced by aphotic DCF, part of the missing carbon can be 'bridged'. Thus, when considering aphotic DCF in addition

to the sequestered DOC from the photic layer, the 'abnormally high' aphotic BCD could 216 be explained in full (≥100%) in ~35% of the observations (Fig 1D). In the other 65% 217 218 of the observations the missing carbon sources needed to support the aphotic BCD 219 remains an enigma. Evidences suggest that dissolved methane may be more abundant in oxygenated environments than previously thought (Grossart et al., 2011). Methane 220 221 can potentially be one of the missing energy sources for marine microbes and support 222 high BCD (Brankovits et al., 2017) as observed at the aphotic southeast Mediterranean 223 Sea (Fig 1D). In agreement, methanotrophs were found in aphotic cold seeps at the 224 southeast Mediterranean Sea (Sisma-Ventura et al., 2022a), as well as across the 225 aphotic water column in our samples (see discussion below). 226 Interannual variability in DCF, but not in LPP or BP, was observed with higher rates recorded in March 2021-March 2022 and lower rates observed in August 2022-August 227 2023 (Fig 1B). The drivers of this variability are unknown and may be related to 228 229 differences in nutrients availability that fuels chemoautotrophic microbes of the aphotic layer between these two periods. While the absolute concentrations of PO₄³⁺ or NO₃⁻ 230 231 +NO₂ in the deep aphotic water were similar overall between periods (not shown) and, 232 therefore, not likely to affect the DCF rates, organic nutrients that were not considered 233 here may limit chemoautotrophy. In support, recent studies from the northern Red Sea and South China Sea showed that DCF at the surface water is limited by labile organic 234 235 nutrients such as phosphonates and even carbon-rich molecules (Reich et al., 2024; 236 Zhou et al., 2017). Aphotic free-living chemoautotrophs are likely to encounter an 237 increasingly refractory pool of dissolved organic matter for metabolism that may result in lower DCF rates, as shown exported through the water column in Bar-Zeev et al. 238 2015. Particle-attached chemoautotrophs may have access to higher concentrations of 239 240 organic substrates, and therefore we surmise they have a preferential particle-attached

lifestyle in the deep ocean. The patchy nature of particulate matter sinking (Alkalay et 241 al., 2024) and aggregate concentrations (Bar-Zeev et al., 2012) in the deep southeast 242 Mediterranean Sea could also potentially explain the interannual variability in DCF 243 244 between periods. Understanding how chemoautotrophs transform labile dissolved organic matter into refractory dissolved organic matter, a process known as the 245 246 'microbial carbon pump' (Herndl and Reinthaler, 2013), is crucial as it influences the 247 efficiency of the biological pump (Jiao et al., 2010). 248 Oxidizing reduced inorganic compounds as electron donors (e.g., NO₂ or NH₄⁺) may provide chemoautotrophic prokaryotes sufficient energy to fix DIC (Hügler and 249 Sievert, 2011). We therefore measured (March and August 2023 cruises) the vertical 250 distribution of NO2- and NH4+ and examined if these chemical species are 251 coupled/uncoupled with DCF at the aphotic zone. Indeed, our results show a negative-252 linear relationship between DCF and NO₂- (Fig 3B) and NH₄+ (Fig 3C), suggesting 253 254 nitrification is potentially an important metabolic pathway yielding energy to fix DIC in the aphotic zone. In agreement, both ammonia and nitrite oxidizers were found in 255 the aphotic zone of all cruises (discussion below), further highlighting their potential 256 257 role as contributors to DCF in southeast Mediterranean Sea. Nitrification measurements 258 along with metagenomic tools, DCF (and BP) in aphotic water should be done in future dedicated studies to better refute or reinforce that oxidation of NO₂ or NH₄ may 259 260 provide chemoautotrophic prokaryotes the energy to fix DIC.

263

264

265

266

267

268

269

270

271

272

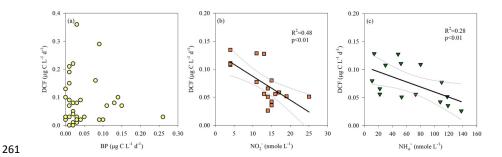
273

274

275

276

277


278

279

280

Figure 3: Possible relationships examined via linear correlations between aphotic DCF and BP (a), NO₂- (b) and NH₄+ (c). Note that NO₂- and NH₄+ was measured only during the 2023 cruises. The 95% confidence interval is shown in gray.

Analyses of 16S rRNA gene amplicons suggest that diverse bacteria and archaea may drive DCF in the aphotic southeast Mediterranean Sea (Fig 4A). Microbes found in our collected genetic material primarily include the order Nitrosopumilales ammoniaoxidizing archaea, which become dominant below DCM (up to ~30% read abundance near the bottom), corresponding to previous estimates based on in-situ fluorescent hybridization (De Corte et al., 2009). Nitrite-oxidizing Nitrospirales comprised ~1% read abundance at depths below 300 m. Among these lineages, analyses of indicator species identified seasonal variation in abundance of the orders Nitrosopumilales and Nitrososphaeria that were more prominent in the stratified period than in wintertime (pvalue<0.05), while the deep-sea community in general exhibited only mild seasonal changes (Fig 4B). These ammonia oxidizers may thus drive ammonia depletion during summertime at the southeast Mediterranean Sea. Additionally, we identified consistent occurrence of UBA10353 (Arenicellales, including the UBA868 group) and SAR324 gammaproteobacterial groups at depths below the deep chlorophyll maxima (Fig 4A). Members from these ubiquitous clades are mixotrophs that can fix inorganic carbon conserving energy from sulfur oxidation

(Baltar et al., 2022; Jaffe et al., 2024; Swan et al., 2011). We did not find the SUP05/Arctic96BD-19 gammaproteobacterial sulfur oxidizers that occur in productive dark oxygenated waters (Swan et al., 2011). We note that Methylococcales methane oxidizers were typical in the near-bottom water layer, as found previously in the southeast Mediterranean Sea basin (Sisma-Ventura et al., 2022a; Techtmann et al., 2015), suggesting methylotrophy as a potential mechanism of 1-carbon molecule acquisition in the dark southeast Mediterranean Sea.

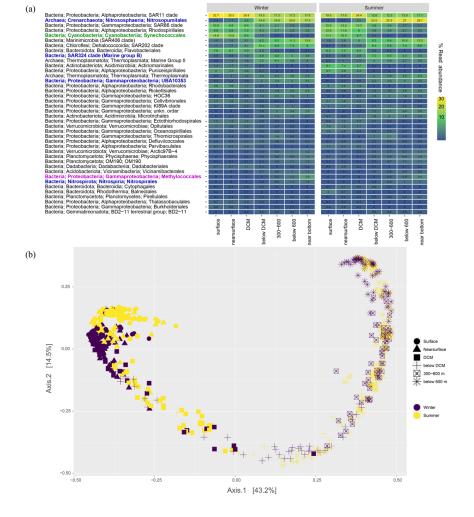


Figure 4: (a) Read abundance of the 40 most abundant taxa (order level) from different depths offshore the Southeastern Mediterranean Sea. Surface samples are within the range of 1-5 m depth; near surface are between 20 and deep chlorophyll maximum (DCM); below DCM corresponds to 180-240 m depths; near bottom samples were taken circa 5 meters above the seafloor. Potential DCF microbes are shown in blue, Methylococcales methanotrophs are marked in magenta, and photosynthetic Synechoccocales are shown in green for reference. (b) A principal component analysis showing the differences in the structure of microbial populations (40 most abundant taxa) based on 16S rRNA gene read mapping.

4 Conclusions

Based on the conceptual model in Figure 5 that summarizes the annual microbial carbon exchanges in the southeast Mediterranean sea's offshore area, it is clear that DOC supplied by LPP is negligible and cannot explain the 'high' BCD in the area, especially in the aphotic zone that is considered a 'microbial hotspot' with high bacterial activity per cell (Hazan et al., 2018; Rahav et al., 2019). Therefore, our back of the envelope calculations highlights that DCF may provide a substantial amount of the missing carbon, at least in the southeast Mediterranean Sea, while source/s for the remaining missing carbon are currently unknown and warrant more research.

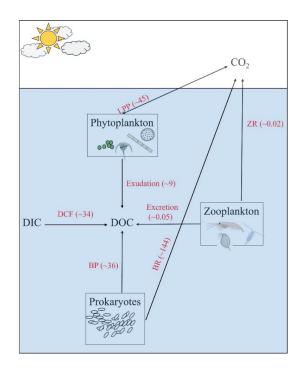


Figure 5: A schematic illustration showing microbial carbon exchange in the southeast Mediterranean Sea. Values shown are the annual averages of LPP, DCF and BP. DOC exudation from LPP was 20% of the rates. BR was calculated from BP and assuming BGE=0.20, Zooplankton's respiration (ZR) and excretion were compiled from Belkin et al. (2022). The numbers in brackets show the integrated values over 1750 m and expressed as g C m⁻² y⁻¹.

Regardless of the yet missing DOC sources, our results demonstrate the pivotal role DCF play in compensating metabolic imbalances in carbon sources at the aphotic southeast Mediterranean Sea. Similarly, DCF was shown to be a significant process supporting microbial respiration and/or activity in aphotic layers (Baltar et al., 2009; Herndl et al., 2005; Yakimov et al., 2011), as well as in hydrothermal vents (Mattes et al., 2013) and cold seeps (Nakagawa et al., 2007).

We note that despite the contribution of DCF to the DOC pool, as well as the other sources, very little of fixed carbon as particulate organic matter (POC) ends up in sediment traps located above the seabed (2-6%). This suggests that most of the fixed carbon arriving from DCF (as well as LPP other potential sources) is recycled in the water column and does not reach the seabed. The rapid microbial recycling of nutrients was mostly investigated in the photic layer of the southeast Mediterranean Sea (e.g., PO₄, Thingstad et al. (2005) and little is known about the processes, which are often cryptic (e.g., NO₂ oxygenation), occurring in the aphotic layers. Our study highlights the need for adding DCF measurements to global carbon budgets. Moreover, understanding the factors affecting DCF in the photic and aphotic layers may provide science-based operational opportunities to increase atmospheric inorganic carbon sequestration.

Data availability statement

The raw physiological data used to generate figures 1-3 can be downloaded from the PANGEA repository: Reich, Tom (2025): Primal, chemo and bacterial productivity coupled with inorganic nutrient concentrations from an off shore, outgoing transect cruises. PANGAEA, https://doi.org/10.1594/PANGAEA.975231. Genomic data can be

Author contribution

TR: Formal experimental work and data analyses; Investigation; Data Curation;

downloaded from the NCBI SRA archive project number PRJNA1215023.

- 344 Visualization; Writing Original Draft Preparation. NB: Resources; Writing –
- Review & Editing. GSV: Investigation; Writing Review & Editing. HH:

346	Investigation. MRB: Investigation; Writing – Review. IBF: Conceptualization;
347	Funding Acquisition; Supervision; data interpretation, Writing – Review & Editing.
348	ER: Conceptualization; Formal Analysis; Funding Acquisition; Supervision;
349	Visualization; Writing – Review & Editing.
350	
351	Competing interests
352	The authors declare that they have no conflict of interest.
353	
354	Acknowledgements
355	We would like to thank the University of Haifa for supporting T. Reich, and the
356	Helmholtz funded International Laboratory; The Eastern Mediterranean Sea Centre-
357	An Early-Warning Model-System for our Future Oceans: EMS Future Ocean
358	REsearch (EMS FORE).
359	This study is in partial fulfillment of the PhD requirements for T. Reich at the Leon
360	H. Charney School of Marine Sciences, at the University of Haifa.
361	
362	Statements and Declarations
363	The authors declare that they have no conflict of interest.
364	
365	Funding
366	This work was supported by the German-Israeli Foundation for Scientific Research
367	and Development 2016021

369 References

- 370 Alkalay, R., Weinstein, Y., Herut, B., Ozer, T., Zlatkin, O., Bar, T., Berman-Frank, I.,
- and Katz, T.: Temporal Pattern and Profile of a Coastal-Deep Sea Conveyor at a
- 372 Marginal Deep Oligotrophic Sea, J Geophys Res Oceans, 129,
- 373 https://doi.org/10.1029/2023JC020441, 2024.
- 374 Alonso-Sáez, L., Galand, P. E., Casamayor, E. O., Pedrós-Alió, C., and Bertilsson, S.:
- 375 High bicarbonate assimilation in the dark by Arctic bacteria, ISME Journal, 4, 1581–
- 376 1590, https://doi.org/10.1038/ismej.2010.69, 2010.
- 377 Alothman, A., López-Sandoval, D., Duarte, C. M., and Agustí, S.: Bacterioplankton
- dark CO 2 fixation in oligotrophic waters, Biogeosciences Discussions,
- 379 https://doi.org/10.5194/bg-2023-65, 2023.
- Andersen, K. S., Kirkegaard, R. H., Karst, S. M., and Albertsen, M.: ampvis2: an R
- package to analyse and visualise 16S rRNA amplicon data,
- 382 https://doi.org/10.1101/299537, 11 April 2018.
- 383 Apprill, A., Mcnally, S., Parsons, R., and Weber, L.: Minor revision to V4 region
- 384 SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton,
- 385 Aquatic Microbial Ecology, 75, 129–137, https://doi.org/10.3354/ame01753, 2015.
- Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E., and Herndl, G. J.: Evidence of
- prokaryotic metabolism on suspended particulate organic matter in the dark waters of
- the subtropical North Atlantic, Limnol Oceanogr, 54, 182–193,
- 389 https://doi.org/10.4319/lo.2009.54.1.0182, 2009.
- 390 Baltar, F., Martínez-Pérez, C., Amano, C., Vial, M., Robaina-Estevez, S., Reinthaler,
- 391 T., Zhao, Z., Logares, R., Herndl, G., Morales, S., and González, J.: Novel bacterial

- 392 group potentially dominates sulfur cycling in the dark ocean,
- 393 https://doi.org/10.21203/rs.3.rs-1561045/v1, 20 April 2022.
- 394 Bar-Zeev, E., Berman-Frank, I., Girshevitz, O., and Berman, T.: Revised paradigm of
- 395 aquatic biofilm formation facilitated by microgel transparent exopolymer particles,
- 396 Proc Natl Acad Sci U S A, 109, 9119–9124,
- 397 https://doi.org/10.1073/pnas.1203708109, 2012.
- 398 Bar-Zeev, E., Passow, U., Romero-Vargas Castrillón, S., and Elimelech, M.:
- 399 Transparent exopolymer particles: From aquatic environments and engineered
- 400 systems to membrane biofouling, https://doi.org/10.1021/es5041738, 20 January
- 401 2015.
- 402 Belkin, N., Guy-haim, T., Rubin-blum, M., Lazar, A., and Sisma-, G.: Influence of
- 403 cyclonic and anti-cyclonic eddies on plankton biomass, activity and diversity in the
- 404 southeastern Mediterranean Sea, 1–56, 2022.
- 405 Ben-Ezra, T., Krom, M. D., Tsemel, A., Berman-Frank, I., Herut, B., Lehahn, Y.,
- 406 Rahav, E., Reich, T., Thingstad, T. F., and Sher, D.: Deep-Sea Research Part I
- 407 Seasonal nutrient dynamics in the P depleted Eastern Mediterranean Sea, Deep-Sea
- 408 Research Part I, 176, 103607, https://doi.org/10.1016/j.dsr.2021.103607, 2021.
- 409 Berg, I. A., Kockelkorn, D., Buckel, W., and Fuchs, G.: A 3-hydroxypropionate/4-
- 410 hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea, Science
- 411 (1979), 318, 1782–1786, https://doi.org/10.1126/science.1149976, 2007.
- 412 Berman-Frank, I. and Rahav, E.: Dinitrogen fixation as a source for new production in
- 413 the Mediterranean Sea: A review, Life in the Mediterranean Sea: A Look at Habitat
- 414 Changes, 199–226, 2012.

- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith,
- 416 G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E.,
- 417 Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-
- 418 Rodríguez, A. M., Chase, J., Cope, E. K., Da Silva, R., Diener, C., Dorrestein, P. C.,
- Douglas, G. M., Durall, D. M., Duvallet, C., Edwardson, C. F., Ernst, M., Estaki, M.,
- 420 Fouquier, J., Gauglitz, J. M., Gibbons, S. M., Gibson, D. L., Gonzalez, A., Gorlick,
- 421 K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G. A.,
- Janssen, S., Jarmusch, A. K., Jiang, L., Kaehler, B. D., Kang, K. Bin, Keefe, C. R.,
- 423 Keim, P., Kelley, S. T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.
- 424 G. I., Lee, J., Ley, R., Liu, Y. X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C.,
- 425 Martin, B. D., McDonald, D., McIver, L. J., Melnik, A. V., Metcalf, J. L., Morgan, S.
- 426 C., Morton, J. T., Naimey, A. T., Navas-Molina, J. A., Nothias, L. F., Orchanian, S.
- B., Pearson, T., Peoples, S. L., Petras, D., Preuss, M. L., Pruesse, E., Rasmussen, L.
- 428 B., Rivers, A., Robeson, M. S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A.,
- 429 Sinha, R., Song, S. J., Spear, J. R., Swafford, A. D., Thompson, L. R., Torres, P. J.,
- 430 Trinh, P., Tripathi, A., Turnbaugh, P. J., Ul-Hasan, S., van der Hooft, J. J. J., Vargas,
- 431 F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., et al.: Reproducible,
- interactive, scalable and extensible microbiome data science using QIIME 2,
- 433 https://doi.org/10.1038/s41587-019-0209-9, 1 August 2019.
- 434 Brankovits, D., Pohlman, J. W., Niemann, H., Leigh, M. B., Leewis, M. C., Becker,
- 435 K. W., Iliffe, T. M., Alvarez, F., Lehmann, M. F., and Phillips, B.: Methane-and
- 436 dissolved organic carbon-fueled microbial loop supports a tropical subterranean
- 437 estuary ecosystem, Nat Commun, 8, https://doi.org/10.1038/s41467-017-01776-x,
- 438 2017.

- Burd, A. B., Hansell, D. A., Steinberg, D. K., Anderson, T. R., Arístegui, J., Baltar,
- 440 F., Beaupré, S. R., Buesseler, K. O., DeHairs, F., Jackson, G. A., Kadko, D. C.,
- 441 Koppelmann, R., Lampitt, R. S., Nagata, T., Reinthaler, T., Robinson, C., Robison, B.
- 442 H., Tamburini, C., and Tanaka, T.: Assessing the apparent imbalance between
- 443 geochemical and biochemical indicators of meso- and bathypelagic biological
- activity: What the @\$#! is wrong with present calculations of carbon budgets?, Deep
- 445 Sea Res 2 Top Stud Oceanogr, 57, 1557–1571,
- 446 https://doi.org/10.1016/j.dsr2.2010.02.022, 2010.
- De Ca'ceres, M., Ca'ceres, C., and Legendre, P.: Associations between species and
- groups of sites: indices and statistical inference, Ecology, 3566–3574 pp., 2009.
- Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and
- 450 Holmes, S. P.: DADA2: High-resolution sample inference from Illumina amplicon
- data, Nat Methods, 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
- 452 La Cono, V., Ruggeri, G., Azzaro, M., Crisafi, F., Decembrini, F., Denaro, R., La
- 453 Spada, G., Maimone, G., Monticelli, L. S., Smedile, F., Giuliano, L., and Yakimov,
- 454 M. M.: Contribution of bicarbonate assimilation to carbon pool dynamics in the deep
- 455 Mediterranean Sea and cultivation of actively nitrifying and CO2-fixing bathypelagic
- 456 prokaryotic consortia, Front Microbiol, 9, https://doi.org/10.3389/fmicb.2018.00003,
- 457 2018.
- 458 De Corte, D., Yokokawa, T., Varela, M. M., Agogué, H., and Herndl, G. J.: Spatial
- 459 distribution of Bacteria and Archaea and amoA gene copy numbers throughout the
- water column of the Eastern Mediterranean Sea, ISME Journal, 3, 147–158,
- 461 https://doi.org/10.1038/ismej.2008.94, 2009.

- 462 Dijkhuizen, L. and Harder, W.: Current views on the regulation of autotrophic carbon
- 463 dioxide fixation via the Calvin cycle in bacteria, Antonie Van Leeuwenhoek, 50, 473–
- 464 487, 1984.
- 465 Ducklow, H. W.: Bacterial Production and Biomass in the Oceans., Microbial
- 466 Ecology of the Oceans., 85–119, 2000.
- Erb, T. J.: Carboxylases in natural and synthetic microbial pathways,
- 468 https://doi.org/10.1128/AEM.05702-11, December 2011.
- 469 Gasol, J. M., Doval, M. D., Pinhassi, J., Calderón-Paz, J. I., Guixa-Boixareu, N.,
- 470 Vaqué, D., and Pedrós-Alió, C.: Diel variations in bacterial heterotrophic activity and
- growth in the northwestern Mediterranean Sea, Mar Ecol Prog Ser, 164, 107–124,
- 472 https://doi.org/10.3354/meps164107, 1998.
- del Giorgio, P. A. and Duarte, C. M.: Respiration in the open ocean, Nature, 420,
- 474 379–384, https://doi.org/10.1038/nature01165, 2002.
- 475 Glöckner, F. O., Yilmaz, P., Quast, C., Gerken, J., Beccati, A., Ciuprina, A., Bruns,
- 476 G., Yarza, P., Peplies, J., Westram, R., and Ludwig, W.: 25 years of serving the
- 477 community with ribosomal RNA gene reference databases and tools,
- 478 https://doi.org/10.1016/j.jbiotec.2017.06.1198, 10 November 2017.
- 479 Grossart, H. P., Frindte, K., Dziallas, C., Eckert, W., and Tang, K. W.: Microbial
- 480 methane production in oxygenated water column of an oligotrophic lake, Proc Natl
- 481 Acad Sci U S A, 108, 19657–19661, https://doi.org/10.1073/pnas.1110716108, 2011.
- 482 Hallam, S. J., Mincer, T. J., Schleper, C., Preston, C. M., Roberts, K., Richardson, P.
- 483 M., and DeLong, E. F.: Pathways of carbon assimilation and ammonia oxidation

- 484 suggested by environmental genomic analyses of marine Crenarchaeota, PLoS Biol,
- 485 4, 520–536, https://doi.org/10.1371/journal.pbio.0040095, 2006.
- 486 Hansman, R. L., Griffin, S., Watson, J. T., Druffel, E. R. M., Ingalls, A. E., Pearson,
- 487 A., and Aluwihare, L. I.: The radiocarbon signature of microorganisms in the
- 488 mesopelagic ocean, Proceedings of the National Academy of Sciences, 106, 6513–
- 489 6518, https://doi.org/10.1073/pnas.0810871106, 2009.
- 490 Hazan, O., Silverman, J., Sisma-Ventura, G., Ozer, T., Gertman, I., Shoham-Frider,
- 491 E., Kress, N., and Rahav, E.: Mesopelagic prokaryotes alter surface phytoplankton
- 492 production during simulated deep mixing experiments in Eastern Mediterranean Sea
- 493 waters, Front Mar Sci, 5, 1–11, https://doi.org/10.3389/fmars.2018.00001, 2018.
- 494 Herndl, G. J. and Reinthaler, T.: Microbial control of the dark end of the biological
- 495 pump, https://doi.org/10.1038/ngeo1921, September 2013.
- 496 Herndl, G. J., Reinthaler, T., Teira, E., Van Aken, H., Veth, C., Pernthaler, A., and
- 497 Pernthaler, J.: Contribution of Archaea to total prokaryotic production in the deep
- 498 atlantic ocean, Appl Environ Microbiol, 71, 2303–2309,
- 499 https://doi.org/10.1128/AEM.71.5.2303-2309.2005, 2005.
- 500 Hügler, M. and Sievert, S. M.: Beyond the Calvin cycle: Autotrophic carbon fixation
- in the ocean, Ann Rev Mar Sci, 3, 261–289, https://doi.org/10.1146/annurev-marine-
- 502 120709-142712, 2011.
- 503 Jaffe, A. L., Salcedo, R. S. R., and Dekas, A. E.: Abundant and metabolically flexible
- 504 lineages within the SAR324 and gammaproteobacteria dominate the potential for
- rubisco-mediated carbon fixation in the dark ocean,
- 506 https://doi.org/10.1101/2024.05.09.593449, 10 May 2024.

- Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W.,
- 508 Kirchman, D. L., Weinbauer, M. G., Luo, T., Chen, F., and Azam, F.: Microbial
- 509 production of recalcitrant dissolved organic matter: Long-term carbon storage in the
- global ocean, https://doi.org/10.1038/nrmicro2386, August 2010.
- Karl, D. M., Knauer, G. A., and Martin, J. H.: Downward flux of particulate organic
- matter in the ocean: a particle decomposition paradox, Nature, 332, 438–441,
- 513 https://doi.org/10.1038/332438a0, 1988.
- Luna, G. M., Bianchelli, S., Decembrini, F., De Domenico, E., Danovaro, R., and
- 515 Dell'Anno, A.: The dark portion of the Mediterranean Sea is a bioreactor of organic
- 516 matter cycling, Global Biogeochem Cycles, 26,
- 517 https://doi.org/https://doi.org/10.1029/2011GB004168, 2012.
- 518 Martínez-Pérez, A. M., Álvarez-Salgado, X. A., Arístegui, J., and Nieto-Cid, M.:
- Deep-ocean dissolved organic matter reactivity along the Mediterranean Sea: Does
- size matter, Sci Rep, 7, https://doi.org/10.1038/s41598-017-05941-6, 2017.
- 521 Mattes, T. E., Nunn, B. L., Marshall, K. T., Proskurowski, G., Kelley, D. S., Kawka,
- 522 O. E., Goodlett, D. R., Hansell, D. A., and Morris, R. M.: Sulfur oxidizers dominate
- 523 carbon fixation at a biogeochemical hot spot in the dark ocean, ISME Journal, 7,
- 524 2349–2360, https://doi.org/10.1038/ismej.2013.113, 2013.
- 525 McMurdie, P. J. and Holmes, S.: Phyloseq: An R Package for Reproducible
- 526 Interactive Analysis and Graphics of Microbiome Census Data, PLoS One, 8,
- 527 https://doi.org/10.1371/journal.pone.0061217, 2013.
- Nakagawa, T., Mori, K., Kato, C., Takahashi, R., and Tokuyama, T.: Distribution of
- 529 Cold-Adapted Ammonia-Oxidizing Microorganisms in the Deep-Ocean of the
- Northeastern Japan Sea, Microbes Environ, 365–372 pp., 2007.

- Nielsen, E. S.: The use of radio-active carbon (C14) for measuring organic production
- in the sea, ICES Journal of Marine Science, 18, 117–140, 1952.
- Parada, A. E., Needham, D. M., and Fuhrman, J. A.: Every base matters: Assessing
- small subunit rRNA primers for marine microbiomes with mock communities, time
- series and global field samples, Environ Microbiol, 18, 1403–1414,
- 536 https://doi.org/10.1111/1462-2920.13023, 2016.
- 537 Psarra, S., Zohary, T., Krom, M. D., Mantoura, R. F. C., Polychronaki, T., Stambler,
- N., Tanaka, T., Tselepides, A., and Frede Thingstad, T.: Phytoplankton response to a
- 539 Lagrangian phosphate addition in the Levantine Sea (Eastern Mediterranean), Deep
- 540 Sea Res 2 Top Stud Oceanogr, 52, 2944–2960,
- 541 https://doi.org/10.1016/j.dsr2.2005.08.015, 2005.
- 542 Rahav, E., Silverman, J., Raveh, O., Hazan, O., Rubin-Blum, M., Zeri, C., Gogou, A.,
- 543 Kralj, M., Pavlidou, A., and Kress, N.: The deep water of Eastern Mediterranean Sea
- is a hotspot for bacterial activity, Deep Sea Res 2 Top Stud Oceanogr, 164, 135–143,
- 545 https://doi.org/10.1016/j.dsr2.2019.03.004, 2019.
- Reich, T., Ben-Ezra, T., Belkin, N., Tsemel, A., Aharonovich, D., Roth-Rosenberg,
- D., Givati, S., Bialik, M., Herut, B., Berman-Frank, I., Frada, M., Krom, M. D.,
- Lehahn, Y., Rahav, E., and Sher, D.: A year in the life of the Eastern Mediterranean:
- Monthly dynamics of phytoplankton and bacterioplankton in an ultra-oligotrophic
- sea, Deep Sea Research Part I: Oceanographic Research Papers, 182, 103720,
- 551 https://doi.org/https://doi.org/10.1016/j.dsr.2022.103720, 2022.
- Reich, T., Belkin, N., Sisma-Ventura, G., Berman-Frank, I., and Rahav, E.:
- 553 Significant dark inorganic carbon fixation in the euphotic zone of an oligotrophic sea,
- Limnol Oceanogr, 69, 1129–1142, https://doi.org/10.1002/lno.12560, 2024.

- Reinthaler, T., van Aken, H. M., and Herndl, G. J.: Major contribution of autotrophy
- 556 to microbial carbon cycling in the deep North Atlantic's interior, Deep Sea Res 2 Top
- 557 Stud Oceanogr, 57, 1572–1580, https://doi.org/10.1016/j.dsr2.2010.02.023, 2010.
- 558 Santinelli, C.: DOC in the Mediterranean Sea, in: Biogeochemistry of marine
- dissolved organic matter, Elsevier, 579–608, 2015.
- 560 Santinelli, C., Nannicini, L., and Seritti, A.: DOC dynamics in the meso and
- bathypelagic layers of the Mediterranean Sea, Deep Sea Res 2 Top Stud Oceanogr,
- 562 57, 1446–1459, https://doi.org/10.1016/j.dsr2.2010.02.014, 2010.
- 563 Simon, M., Alldredge, A., and Azam, F.: Bacterial carbon dynamics on marine snow,
- 564 Mar Ecol Prog Ser, 65, 205–211, 1990.
- 565 Sisma-Ventura, G., Kress, N., Silverman, J., Gertner, Y., Ozer, T., Biton, E., Lazar,
- A., Gertman, I., Rahav, E., and Herut, B.: Post-eastern Mediterranean Transient
- Oxygen Decline in the Deep Waters of the Southeast Mediterranean Sea Supports
- Weakening of Ventilation Rates, Front Mar Sci, 7,
- 569 https://doi.org/10.3389/fmars.2020.598686, 2021.
- 570 Sisma-Ventura, G., Bialik, O. M., Makovsky, Y., Rahav, E., Ozer, T., Kanari, M.,
- 571 Marmen, S., Belkin, N., Guy-Haim, T., Antler, G., Herut, B., and Rubin-Blum, M.:
- 572 Cold seeps alter the near-bottom biogeochemistry in the ultraoligotrophic
- 573 Southeastern Mediterranean Sea, Deep Sea Research Part I: Oceanographic Research
- 574 Papers, 183, 103744, https://doi.org/https://doi.org/10.1016/j.dsr.2022.103744, 2022a.
- 575 Sisma-Ventura, G., Belkin, N., Rubin-Blum, M., Jacobson, Y., Hauzer, H., Bar-Zeev,
- 576 E., and Rahav, E.: Discharge of polyphosphonate-based antiscalants via desalination
- 577 brine: impact on seabed nutrient flux and microbial activity, Environ Sci Technol,
- 578 https://doi.org/10.1021/acs.est.2c04652, 2022b.

- 579 Smith, D. and Azam, F.: A simple, economical method for measuring bacterial
- protein synthesis rates in seawater using, Marine microbial food webs, 6, 107–114,
- 581 1992.
- 582 Swan, B. K., Martinez-Garcia, M., Preston, C. M., Sczyrba, A., Woyke, T., Lamy, D.,
- Reinthaler, T., Poulton, N. J., Masland, E. D. P., Gomez, M. L., Sieracki, M. E.,
- DeLong, E. F., Herndl, G. J., and Stepanauskas, R.: Potential for
- chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean, Science
- 586 (1979), 333, 1296–1300, https://doi.org/10.1126/science.1203690, 2011.
- 587 Techtmann, S. M., Fortney, J. L., Ayers, K. A., Joyner, D. C., Linley, T. D., Pfiffner,
- 588 S. M., and Hazen, T. C.: The unique chemistry of Eastern Mediterranean water
- masses selects for distinct microbial communities by depth, PLoS One, 10,
- 590 https://doi.org/10.1371/journal.pone.0120605, 2015.
- 591 Teira, E., Pazó, M., Quevedo, M., Fuentes, M., Niell, F., and Fernández, E.: Rates of
- 592 dissolved organic carbon production and bacterial activity in the eastern North
- 593 Atlantic Subtropical Gyre during summer, Mar Ecol Prog Ser, 249, 53–67,
- 594 https://doi.org/10.3354/meps249053, 2003.
- 595 Thingstad, T. F., Krom, M. D., Mantoura, R. F. C., Flaten, G. A. F., Groom, S., Herut,
- 596 B., Kress, N., Law, C. S., Pasternak, A., and Pitta, P.: Nature of phosphorus limitation
- in the ultraoligotrophic eastern Mediterranean, Science (1979), 309, 1068–1071,
- 598 2005.
- 599 Whitman, W. B., Coleman, D. C., and Wiebe, W. J.: Perspective Prokaryotes: The
- 600 unseen majority, 6578–6583 pp., 1998.
- 601 Yakimov, M. M., Cono, V. La, Smedile, F., Deluca, T. H., Juárez, S., Ciordia, S.,
- Fernández, M., Albar, J. P., Ferrer, M., Golyshin, P. N., and Giuliano, L.:

603	Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary
604	production in Tyrrhenian deep waters (Central Mediterranean Sea), ISME Journal, 5,
605	945–961, https://doi.org/10.1038/ismej.2010.197, 2011.
606	Zhou, W., Li, Y., Liu, X., He, S., and Huang, J. C.: Comparison of microbial
607	communities in different sulfur-based autotrophic denitrification reactors, Appl
608	Microbiol Biotechnol, 101, 447–453, https://doi.org/10.1007/s00253-016-7912-y,
609	2017.
610	